Lindelöf Representations and (Non-)Holonomic Sequences
نویسندگان
چکیده
Various sequences that possess explicit analytic expressions can be analysed asymptotically through integral representations due to Lindelöf, which belong to an attractive but largely forgotten chapter of complex analysis. One of the outcomes of such analyses concerns the non-existence of linear recurrences with polynomial coefficients annihilating these sequences, and, accordingly, the non-existence of linear differential equations with polynomial coefficients annihilating their generating functions. In particular, the corresponding generating functions are transcendental. Asymptotics of certain finite difference sequences come out as a byproduct of our approach. Introduction There has been recently a surge of interest in methods for proving that certain sequences coming from analysis or combinatorics are non-holonomic. Recall that a sequence (fn) is holonomic, or P -recursive if it satisfies a linear recurrence with coefficients that are polynomial (equivalently, rational) in the index n; that is,
منابع مشابه
A MATHEMATICA PACKAGE FOR q-HOLONOMIC SEQUENCES AND POWER SERIES
We describe a Mathematica package for dealing with q-holonomic sequences and power series. The package is intended as a q-analogue of the Maple package gfun and the Mathematica package GeneratingFunctions. It provides commands for addition, multiplication, and substitution of these objects, for converting between various representations (q-differential equations, q-recurrence equations, q-shift...
متن کاملOn Some Non-Holonomic Sequences
A sequence of complex numbers is holonomic if it satisfies a linear recurrence with polynomial coefficients. A power series is holonomic if it satisfies a linear differential equation with polynomial coefficients, which is equivalent to its coefficient sequence being holonomic. It is well known that all algebraic power series are holonomic. We show that the analogous statement for sequences is ...
متن کاملComputer Algebra Algorithms for Orthogonal Polynomials and Special Functions
In this minicourse I would like to present computer algebra algorithms for the work with orthogonal polynomials and special functions. This includes • the computation of power series representations of hypergeometric type functions, given by “expressions”, like arcsin(x)/x , • the computation of holonomic differential equations for functions, given by expressions, • the computation of holonomic...
متن کاملOn the Non-Holonomic Character of Logarithms, Powers, and the nth Prime Function
We establish that the sequences formed by logarithms and by “fractional” powers of integers, as well as the sequence of prime numbers, are non-holonomic, thereby answering three open problems of Gerhold [El. J. Comb. 11 (2004), R87]. Our proofs depend on basic complex analysis, namely a conjunction of the Structure Theorem for singularities of solutions to linear differential equations and of a...
متن کاملA representation theorem for (q-)holonomic sequences
Chomsky and Schützenberger showed in 1963 that the sequence dL(n), which counts the number of words of a given length n in a regular language L, satisfies a linear recurrence relation with constant coefficients for n, i.e., it is C-finite. It follows that every sequence s(n) which satisfies a linear recurrence relation with constant coefficients can be represented as dL1 (n)− dL2 (n) for two re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 17 شماره
صفحات -
تاریخ انتشار 2010